Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Virol J ; 20(1): 106, 2023 05 29.
Article in English | MEDLINE | ID: covidwho-20243616

ABSTRACT

BACKGROUND: The pathogenicity and virulence of the Omicron strain have weakened significantly pathogenesis of Omicron variants. Accumulating data indicated accessory proteins play crucial roles in host immune evasion and virus pathogenesis of SARS-CoV-2. Therefore, the impact of simultaneous deletion of accessory protein ORF7a, ORF7b and ORF8 on the clinical characteristics and specific immunity in Omicron breakthrough infected patients (BIPs) need to be verified. METHODS: Herein, plasma cytokines were identified using a commercial Multi-cytokine detection kit. Enzyme-linked immunosorbent assay and pseudovirus neutralization assays were utilized to determine the titers of SARS-CoV-2 specific binding antibodies and neutralizing antibodies, respectively. In addition, an enzyme-linked immunospot assay was used to quantify SARS-CoV-2 specific T cells and memory B cells. RESULTS: A local COVID-19 outbreak was caused by the Omicron BA.2 variant, which featured a deletion of 871 base pairs (∆871 BA.2), resulting in the removal of ORF7a, ORF7b, and ORF8. We found that hospitalized patients with ∆871 BA.2 had significantly shorter hospital stays than those with wild-type (WT) BA.2. Plasma cytokine levels in both ∆871 BA.2 and WT BA.2 patients were within the normal range of reference, and there was no notable difference in the titers of SARS-CoV-2 ancestor or Omicron-specific binding IgG antibodies, neutralizing antibody titers, effector T cells, and memory B cells frequencies between ∆871 BA.2 and WT BA.2 infected adult patients. However, antibody titers in ∆871 BA.2 infected adolescents were higher than in adults. CONCLUSIONS: The simultaneous deletion of ORF7a, ORF7b, and ORF8 facilitates the rapid clearance of the BA.2 variant, without impacting cytokine levels or affecting SARS-CoV-2 specific humoral and cellular immunity in Omicron-infected individuals.


Subject(s)
COVID-19 , Adolescent , Adult , Humans , SARS-CoV-2/genetics , Antibodies, Neutralizing , Antibodies, Viral , Cytokines , Enzyme-Linked Immunospot Assay
2.
Front Immunol ; 14: 1148877, 2023.
Article in English | MEDLINE | ID: covidwho-2317568

ABSTRACT

Introduction: We investigated whether prior SARS-CoV-2-specific IFN-γ and antibody responses in Ugandan COVID-19 pre-pandemic specimens aligned to this population's low disease severity. Methods: We used nucleoprotein (N), spike (S), NTD, RBD, envelope, membrane, SD1/2-directed IFN-γ ELISpots, and an S- and N-IgG antibody ELISA to screen for SARS-CoV-2-specific cross-reactivity. Results: HCoV-OC43-, HCoV-229E-, and SARS-CoV-2-specific IFN-γ occurred in 23, 15, and 17 of 104 specimens, respectively. Cross-reactive IgG was more common against the nucleoprotein (7/110, 15.5%; p = 0.0016, Fishers' Exact) than the spike (3/110, 2.72%). Specimens lacking anti-HuCoV antibodies had higher rates of pre-epidemic SARS-CoV-2-specific IFN-γ cross-reactivity (p-value = 0.00001, Fishers' exact test), suggesting that exposure to additional factors not examined here might play a role. SARS-CoV-2-specific cross-reactive antibodies were significantly less common in HIV-positive specimens (p=0.017; Fishers' Exact test). Correlations between SARS-CoV-2- and HuCoV-specific IFN-γ responses were consistently weak in both HIV negative and positive specimens. Discussion: These findings support the existence of pre-epidemic SARS-CoV-2-specific cellular and humoral cross-reactivity in this population. The data do not establish that these virus-specific IFN-γ and antibody responses are entirely specific to SARS-CoV-2. Inability of the antibodies to neutralise SARS-CoV-2 implies that prior exposure did not result in immunity. Correlations between SARS-CoV-2 and HuCoV-specific responses were consistently weak, suggesting that additional variables likely contributed to the pre-epidemic cross-reactivity patterns. The data suggests that surveillance efforts based on the nucleoprotein might overestimate the exposure to SARS-CoV-2 compared to inclusion of additional targets, like the spike protein. This study, while limited in scope, suggests that HIV-positive people are less likely than HIV-negative people to produce protective antibodies against SARS-CoV-2.


Subject(s)
COVID-19 , HIV Seropositivity , Humans , Pandemics , SARS-CoV-2 , Antibody Formation , COVID-19/epidemiology , Uganda/epidemiology , Antibodies, Viral , Enzyme-Linked Immunospot Assay
3.
Front Immunol ; 14: 1100594, 2023.
Article in English | MEDLINE | ID: covidwho-2283664

ABSTRACT

Introduction: While antibodies raised by SARS-CoV-2 mRNA vaccines have had compromised efficacy to prevent breakthrough infections due to both limited durability and spike sequence variation, the vaccines have remained highly protective against severe illness. This protection is mediated through cellular immunity, particularly CD8+ T cells, and lasts at least a few months. Although several studies have documented rapidly waning levels of vaccine-elicited antibodies, the kinetics of T cell responses have not been well defined. Methods: Interferon (IFN)-γ enzyme-linked immunosorbent spot (ELISpot) assay and intracellular cytokine staining (ICS) were utilized to assess cellular immune responses (in isolated CD8+ T cells or whole peripheral blood mononuclear cells, PBMCs) to pooled peptides spanning spike. ELISA was performed to quantitate serum antibodies against the spike receptor binding domain (RBD). Results: In two persons receiving primary vaccination, tightly serially evaluated frequencies of anti-spike CD8+ T cells using ELISpot assays revealed strikingly short-lived responses, peaking after about 10 days and becoming undetectable by about 20 days after each dose. This pattern was also observed in cross-sectional analyses of persons after the first and second doses during primary vaccination with mRNA vaccines. In contrast, cross-sectional analysis of COVID-19-recovered persons using the same assay showed persisting responses in most persons through 45 days after symptom onset. Cross-sectional analysis using IFN-γ ICS of PBMCs from persons 13 to 235 days after mRNA vaccination also demonstrated undetectable CD8+ T cells against spike soon after vaccination, and extended the observation to include CD4+ T cells. However, ICS analyses of the same PBMCs after culturing with the mRNA-1273 vaccine in vitro showed CD4+ and CD8+ T cell responses that were readily detectable in most persons out to 235 days after vaccination. Discussion: Overall, we find that detection of spike-targeted responses from mRNA vaccines using typical IFN-γ assays is remarkably transient, which may be a function of the mRNA vaccine platform and an intrinsic property of the spike protein as an immune target. However, robust memory, as demonstrated by capacity for rapid expansion of T cells responding to spike, is maintained at least several months after vaccination. This is consistent with the clinical observation of vaccine protection from severe illness lasting months. The level of such memory responsiveness required for clinical protection remains to be defined.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , 2019-nCoV Vaccine mRNA-1273 , Cross-Sectional Studies , Leukocytes, Mononuclear , COVID-19/prevention & control , Vaccination , Cytokines , Antibodies, Viral , Enzyme-Linked Immunospot Assay
4.
Front Immunol ; 13: 1042784, 2022.
Article in English | MEDLINE | ID: covidwho-2237497

ABSTRACT

Background: A third mRNA vaccine booster is recommended to improve immunity against SARS-CoV-2 in kidney transplant recipients (KTRs). However, the immunity against SARS-CoV-2 Ancestral strain and Delta and Omicron variants elicited by the third dose of inactivated booster vaccine in KTRs remains unknown. Methods: The blood parameters related to blood cells count, hepatic function, kidney function, heart injury and immunity were explored clinically from laboratory examinations. SARS-CoV-2 specific antibody IgG titer was detected using an enzyme-linked immunosorbent assay. Cellular immunity was analyzed using interferon-γ enzyme-linked immunospot assay. Results: The results showed that there were no severe adverse effects and apparent changes of clinical laboratory biomarkers in KTRs and healthy volunteers (HVs) after homologous inactivated vaccine booster. A third dose of inactivated vaccine booster significantly increased anti-Ancestral-spike-trimer-IgG and anti-Ancestral-receptor binding domain (RBD)-IgG titers in KTRs and HVs compared with the second vaccination. However, the anti-Delta-RBD-IgG and anti-Omicron-RBD-IgG titers were significantly lower than anti-Ancestral-RBD-IgG titer in KTRs and HVs after the third dose. Notably, only 25.6% (10/39) and 10.3% (4/39) of KTRs had seropositivity for anti-Delta-RBD-IgG and anti-Omicron-RBD-IgG after booster, which were significantly lower than HVs (anti-Delta-RBD-IgG: 100%, anti-Omicron-RBD-IgG: 77.8%). Ancestral strain nucleocapsid protein and spike specific T cell frequency after booster was not significantly increased in KTRs compared with the second dose, significantly lower than that in HVs. Moreover, 33.3% (12/36), 14.3% (3/21) and 14.3% (3/21) of KTRs were positive for the Ancestral strain and Delta and Omicron spike-specific T cells, which were significantly lower than HVs (Ancestral: 80.8%, Delta: 53.8%, and Omicron: 57.7%). Conclusions: A third dose of inactivated booster vaccine may significantly increase humoral immunity against the Ancestral strain in KTRs, while humoral and cellular immunity against the Delta and Omicron variants were still poor in KTRs.


Subject(s)
COVID-19 Vaccines , COVID-19 , Kidney Transplantation , Humans , Antibodies, Viral , COVID-19/immunology , COVID-19/prevention & control , Enzyme-Linked Immunospot Assay , Immunoglobulin G , SARS-CoV-2 , Immunization, Secondary , COVID-19 Vaccines/immunology
5.
Virol J ; 19(1): 223, 2022 12 22.
Article in English | MEDLINE | ID: covidwho-2196349

ABSTRACT

BACKGROUND: Adaptive immune response has been thought to play a key role in SARS-CoV-2 infection. The role of B cells, CD4+T, and CD8+T cells are different in vaccine-induced immune response, thus it is imperative to explore the functions and kinetics of adaptive immune response. We collected blood samples from unvaccinated and vaccinated individuals. To assess the mechanisms contributing to protective immunity of CoronaVac vaccines, we mapped the kinetics and durability of humoral and cellular immune responses after primary and boost vaccination with CoronaVac vaccine in different timepoints. MATERIALS AND METHODS: We separate PBMC and plasma from blood samples. The differentiation and function of RBD-spcific CD4+T and CD8+T cells were analyzed by flow cytometry and ELISA. Antibodies response was analyzed by ELISA. ELISPOT analysis was perfomed to detected the RBD-spcific memory B cells. CBA analysis was performed to detected the cytokine immune profiles. Graphpad prism 8 and Origin 2021 were used for statistical analysis. RESULTS: Vaccine-induced CD4+T cell responses to RBD were more prominent than CD8+T cell responses, and characterized by a predominant Th1 and weak Th17 helper response. CoronaVac vaccine triggered predominant IgG1 antibody response and effectively recalled specific antibodies to RBD protein after booster vaccination. Robust antigen-specific memory B cells were detected (p < 0.0001) following booster vaccination and maintained at 6 months (p < 0.0001) following primary vaccination. Vaccine-induced CD4+T cells correlated with CD8+T cells (r = 0.7147, 0.3258, p < 0.0001, p = 0.04), memory B cell responses (r = 0.7083, p < 0.0001), and IgG and IgA (r = 0.6168, 0.5519, p = 0.0006, 0.003) after vaccination. In addition, vaccine induced a broader and complex cytokine pattern in plasma at early stage. CONCLUSION: Taken together, these results highlight the potential role of B cell and T cell responses in vaccine-induced long-term immunity.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Leukocytes, Mononuclear , COVID-19/prevention & control , Vaccination , Cytokines , Enzyme-Linked Immunospot Assay , Immunity , Antibodies, Viral
6.
Front Immunol ; 13: 928501, 2022.
Article in English | MEDLINE | ID: covidwho-2065504

ABSTRACT

COVID-19 pandemic witnessed rapid development and use of several vaccines. In India, a country-wide immunization was initiated in January 2021. COVISHIELD, the chimpanzee adenoviral-vectored vaccine with full-length SARS-COV-2 spike insert and COVAXIN, the whole virus-inactivated vaccines were used. To assess and compare immune response of health-care-workers to COVISHIELD (n=187) and COVAXIN (n=21), blood samples were collected pre-vaccination, 1month post-1/post-2 doses and 6months post-dose-2 and tested for IgG-anti-SARS-CoV-2 (ELISA) and neutralizing (Nab,PRNT50) antibodies. Spike-protein-specific T cells were quantitated by IFN-γ-ELISPOT. In pre-vaccination-antibody-negative COVISHIELD recipients (pre-negatives, n=120), %Nab seroconversion (median, IQR Nab titers) increased from 55.1% (16, 2.5-36.3) post-dose-1 to 95.6% (64.5, 4.5-154.2, p<0.001) post-dose-2 that were independent of age/gender/BMI. Nab response was higher among pre-positives with hybrid immunity at all-time points (p<0.01-0.0001) and independent of age/gender/BMI/Comorbidities. Post-dose-2-seroconversion (50%, p<0.001) and Nab titers (6.75, 2.5-24.8, p<0.001) in COVAXIN-recipients were lower than COVISHIELD. COVAXIN elicited a superior IFN-γ-T cell response as measured by ELISPOT (100%; 1226, 811-1532 spot forming units, SFU/million PBMCs v/s 57.8%; 21.7,1.6-169.2; p<0.001). At 6months, 28.3% (15/53) COVISHIELD and 3/3COVAXIN recipients were Nab-negative. T cell response remained unchanged. During immunization, COVID-19 cases were detected among COVISHIELD (n=4) and COVAXIN (n=2) recipients. At 6months, 9cases were recorded in COVISHIELD-recipients. This first-time, systematic, real-world assessment and long-term follow up revealed generation of higher neutralizing antibody titers by COVISHIELD and stronger T-cell response by COVAXIN. Diminished Nab titers at 6months emphasize early booster. Immunogenicity/efficacy of vaccines will change with the progression of the pandemic needing careful evaluations in the field-settings.


Subject(s)
COVID-19 Vaccines , COVID-19 , Antibodies, Neutralizing , COVID-19/prevention & control , ChAdOx1 nCoV-19 , Cohort Studies , Enzyme-Linked Immunospot Assay , Health Personnel , Humans , Immunoglobulin G , Pandemics/prevention & control , SARS-CoV-2 , Tertiary Care Centers , Vaccines, Inactivated
7.
Immun Inflamm Dis ; 10(10): e617, 2022 10.
Article in English | MEDLINE | ID: covidwho-2030978

ABSTRACT

INTRODUCTION: Evaluation of different cell-based assays for the study of adaptive immune responses against SARS-CoV-2 is crucial for studying long-term and vaccine-induced immunity. METHODS: Enzyme-linked immunospot assay (ELISpot) and intracellular cytokine staining (ICS) using peptide pools spanning the spike protein and nucleoprotein of SARS-CoV-2 were performed in 25 patients who recovered from paucisymptomatic (n = 19) or severe COVID-19 (n = 6). RESULTS: The proportion of paucisymptomatic patients with detectable SARS-CoV-2 T cells was low, as only 44% exhibit a positive T cell response with the ICS and 67% with the ELISpot. The magnitude of SARS-CoV-2 T cell responses was low, both with ICS (median at 0.12% among total T cells) and ELISpot (median at 61 SFCs/million peripheral blood mononuclear cells [PBMC]) assays. Moreover, T cell responses in paucisymptomatic patients seemed lower than among patients with severe disease. In the paucisymptomatic patients, the two assays were well correlated with 76% of concordant responses and a Cohen's kappa of 55. Furthermore, in four patients SARS-CoV-2 T cells were detected by ELISpot but not with ICS. Short-term culture could improve the detection of specific T cells. CONCLUSIONS: In patients who recovered from paucisymptomatic COVID-19, the proportion of detectable anti-SARS-CoV-2 responses and their magnitude seemed lower than in patients with more severe symptoms. The ELISpot appeared to be more sensitive than the ICS assay. Short-term culture revealed that paucisymptomatic patients had nonetheless few SARS-CoV-2 T cells at a very low rate in peripheral blood. These data indicate that various ex-vivo assays may lead to different conclusions about the presence or absence of SARS-CoV-2 T cell immunity.


Subject(s)
COVID-19 , SARS-CoV-2 , Cytokines , Enzyme-Linked Immunospot Assay , Flow Cytometry , Humans , Leukocytes, Mononuclear , Nucleoproteins , Peptides , Spike Glycoprotein, Coronavirus , T-Lymphocytes
8.
Front Immunol ; 13: 835830, 2022.
Article in English | MEDLINE | ID: covidwho-1902993

ABSTRACT

CD8+ T cells have key protective roles in many viral infections. While an overall Th1-biased cellular immune response against SARS-CoV-2 has been demonstrated, most reports of anti-SARS-CoV-2 cellular immunity have evaluated bulk T cells using pools of predicted epitopes, without clear delineation of the CD8+ subset and its magnitude and targeting. In recently infected persons (mean 29.8 days after COVID-19 symptom onset), we confirm a Th1 bias (and a novel IL-4-producing population of unclear significance) by flow cytometry, which does not correlate to antibody responses against the receptor binding domain. Evaluating isolated CD8+ T cells in more detail by IFN-γ ELISpot assays, responses against spike, nucleocapsid, matrix, and envelope proteins average 396, 901, 296, and 0 spot-forming cells (SFC) per million, targeting 1.4, 1.5, 0.59, and 0.0 epitope regions respectively. Nucleocapsid targeting is dominant in terms of magnitude, breadth, and density of targeting. The magnitude of responses drops rapidly post-infection; nucleocapsid targeting is most sustained, and vaccination selectively boosts spike targeting. In SARS-CoV-2-naïve persons, evaluation of the anti-spike CD8+ T cell response soon after vaccination (mean 11.3 days) yields anti-spike CD8+ T cell responses averaging 2,463 SFC/million against 4.2 epitope regions, and targeting mirrors that seen in infected persons. These findings provide greater clarity on CD8+ T cell anti-SARS-CoV-2 targeting, breadth, and persistence, suggesting that nucleocapsid inclusion in vaccines could broaden coverage and durability.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , Nucleocapsid/immunology , SARS-CoV-2/physiology , Antibodies, Viral/metabolism , Broadly Neutralizing Antibodies/metabolism , Cells, Cultured , Enzyme-Linked Immunospot Assay , Humans , Molecular Targeted Therapy , Peptides/genetics , Peptides/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , United States , Vaccination
10.
Front Immunol ; 13: 838985, 2022.
Article in English | MEDLINE | ID: covidwho-1742221

ABSTRACT

Introduction: Studies have shown reduced antiviral responses in kidney transplant recipients (KTRs) following SARS-CoV-2 mRNA vaccination, but data on post-vaccination alloimmune responses and antiviral responses against the Delta (B.1.617.2) variant are limited. Materials and methods: To address this issue, we conducted a prospective, multi-center study of 58 adult KTRs receiving mRNA-BNT162b2 or mRNA-1273 vaccines. We used multiple complementary non-invasive biomarkers for rejection monitoring including serum creatinine, proteinuria, donor-derived cell-free DNA, peripheral blood gene expression profile (PBGEP), urinary CXCL9 mRNA and de novo donor-specific antibodies (DSA). Secondary outcomes included development of anti-viral immune responses against the wild-type and Delta variant of SARS-CoV-2. Results: At a median of 85 days, no KTRs developed de novo DSAs and only one patient developed acute rejection following recent conversion to belatacept, which was associated with increased creatinine and urinary CXCL9 levels. During follow-up, there were no significant changes in proteinuria, donor-derived cell-free DNA levels or PBGEP. 36% of KTRs in our cohort developed anti-wild-type spike antibodies, 75% and 55% of whom had neutralizing responses against wild-type and Delta variants respectively. A cellular response against wild-type S1, measured by interferon-γ-ELISpot assay, developed in 38% of KTRs. Cellular responses did not differ in KTRs with or without antibody responses. Conclusions: SARS-CoV-2 mRNA vaccination in KTRs did not elicit a significant alloimmune response. About half of KTRs who develop anti-wild-type spike antibodies after two mRNA vaccine doses have neutralizing responses against the Delta variant. There was no association between anti-viral humoral and cellular responses.


Subject(s)
2019-nCoV Vaccine mRNA-1273/immunology , BNT162 Vaccine/immunology , Graft Rejection/diagnosis , Kidney Transplantation , Monitoring, Physiologic/methods , SARS-CoV-2/immunology , Aged , Antibodies, Viral/blood , Enzyme-Linked Immunospot Assay , Female , Humans , Immunity, Cellular , Isoantibodies/blood , Male , Middle Aged , Prospective Studies , Transplantation, Homologous , Vaccination
11.
Viruses ; 14(2)2022 02 08.
Article in English | MEDLINE | ID: covidwho-1674830

ABSTRACT

The progression of the COVID-19 pandemic has led to the emergence of variants of concern (VOC), which may compromise the efficacy of the currently administered vaccines. Antigenic drift can potentially bring about reduced protective T cell immunity and, consequently, more severe disease manifestations. To assess this possibility, the T cell responses to the wild-type Wuhan-1 SARS-CoV-2 ancestral spike protein and the Omicron B.1.1.529 spike protein were compared. Accordingly, peripheral blood mononuclear cells (PBMC) were collected from eight healthy volunteers 4-5 months following a third vaccination with BNT162b2, and stimulated with overlapping peptide libraries representing the spike of either the ancestral or the Omicron SARS-CoV-2 virus variants. Quantification of the specific T cells was carried out by a fluorescent ELISPOT assay, monitoring cells secreting interferon-gamma (IFNg), interleukin-10 (IL-10) and interleukin-4 (IL-4). For all the examined individuals, comparable levels of reactivity to both forms of spike protein were determined. In addition, a dominant Th1 response was observed, manifested mainly by IFNg-secreting cells and only limited numbers of IL-10- and IL-4-secreting cells. The data demonstrate stable T cell activity in response to the emerging Omicron variant in the tested individuals; therefore, the protective immunity to the variant following BNT162b2 vaccination is not significantly affected.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , BNT162 Vaccine/immunology , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Adult , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , BNT162 Vaccine/administration & dosage , COVID-19/immunology , COVID-19/prevention & control , Cytokines/analysis , Cytokines/immunology , Enzyme-Linked Immunospot Assay , Female , Humans , Interferon-gamma/analysis , Interferon-gamma/immunology , Male , Middle Aged , Spike Glycoprotein, Coronavirus/immunology , Th1 Cells/immunology , Young Adult
12.
J Virol Methods ; 300: 114398, 2022 02.
Article in English | MEDLINE | ID: covidwho-1654867

ABSTRACT

Coronavirus disease 2019 (COVID-19) vaccination programs rolled out in an attempt to stop the COVID-19 pandemic. Besides neutralising antibodies, effective T cell responses are also crucial for protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and COVID-19 disease severity. To assess SARS-CoV-2-specific T cell immunity, we developed an interferon-gamma (IFN-γ) enzyme-linked immunospot (ELISpot) that can be deployed in research and diagnostic settings. We optimised our ELISpot by testing multiple antigen concentrations to stimulate peripheral blood mononuclear cells of SARS-CoV-2-unexposed, COVID-19 convalescent and COVID-19 vaccinated volunteers. Also, we developed an ELISpot plate reader-free method to detect and quantify spots, which we compared to manual spot counting and automated analysis by an ELISpot plate reader. We observed strong SARS-CoV-2-reactive T cell responses in COVID-19 convalescent, and COVID-19 vaccinated volunteers but absent or only weak responses in unexposed volunteers. Overall, antigens with concentrations from 0.1 to 5.0 µg/mL per peptide elicited similar T cell responses. Also, our plate reader-free detection method reliably detected and quantified SARS-CoV-2-specific T cells, demonstrated by an excellent reliability when compared to manual analysis and automated analysis by an ELISpot plate reader.


Subject(s)
COVID-19 , Immunity, Cellular , T-Lymphocytes/immunology , Antibodies, Viral , COVID-19/immunology , Enzyme-Linked Immunospot Assay , Humans , Interferon-gamma , Leukocytes, Mononuclear , Pandemics , Reproducibility of Results , SARS-CoV-2
13.
Front Immunol ; 12: 774491, 2021.
Article in English | MEDLINE | ID: covidwho-1648672

ABSTRACT

Common human coronaviruses have been circulating undiagnosed worldwide. These common human coronaviruses share partial sequence homology with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); therefore, T cells specific to human coronaviruses are also cross-reactive with SARS-CoV-2 antigens. Herein, we defined CD4+ T cell responses that were cross-reactive with SARS-CoV-2 antigens in blood collected in 2016-2018 from healthy donors at the single allele level using artificial antigen-presenting cells (aAPC) expressing a single HLA class II allotype. We assessed the allotype-restricted responses in the 42 individuals using the aAPCs matched 22 HLA-DR alleles, 19 HLA-DQ alleles, and 13 HLA-DP alleles. The response restricted by the HLA-DR locus showed the highest magnitude, and that by HLA-DP locus was higher than that by HLA-DQ locus. Since two alleles of HLA-DR, -DQ, and -DP loci are expressed co-dominantly in an individual, six different HLA class II allotypes can be used to the cross-reactive T cell response. Of the 16 individuals who showed a dominant T cell response, five, one, and ten showed a dominant response by a single allotype of HLA-DR, -DQ, and -DP, respectively. The single allotype-restricted T cells responded to only one antigen in the five individuals and all the spike, membrane, and nucleocapsid proteins in the six individuals. In individuals heterozygous for the HLA-DPA and HLA-DPB loci, four combinations of HLA-DP can be expressed, but only one combination showed a dominant response. These findings demonstrate that cross-reactive T cells to SARS-CoV-2 respond with single-allotype dominance.


Subject(s)
Alleles , Antigens, Viral/immunology , CD4-Positive T-Lymphocytes/immunology , COVID-19/immunology , Genes, MHC Class II , HLA-D Antigens/genetics , SARS-CoV-2/immunology , Adult , Antigen-Presenting Cells/immunology , Blood Donors , COVID-19/virology , Cells, Cultured , Cross Reactions , Enzyme-Linked Immunospot Assay/methods , Female , HLA-D Antigens/immunology , Healthy Volunteers , Humans , Immunoglobulin Allotypes/immunology , Male , Young Adult
14.
Int J Infect Dis ; 115: 208-214, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1611763

ABSTRACT

OBJECTIVES: Antiviral adaptive immunity involves memory B cells (MBC) and memory T cells (MTC). The dynamics of MBC and MTC in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) convalescents warrant further investigation. METHODS: In this cross-sectional and longitudinal study, blood-derived MBC and MTC responses were evaluated in 68 anti-spike IgG-positive mild coronavirus disease 2019 (COVID-19) convalescents at visit 1, between 1 and 7 months (median 4.1 months) after disease onset. SARS-CoV-2 anti-spike IgG was determined by ELISA, MBC by SARS-CoV-2-specific receptor binding domain (RBD) ELISpot, and interferon gamma (IFN-γ)-, interleukin 2 (IL2)-, and IFN-γ+IL2-secreting MTC by IFN-γ and IL2 SARS-CoV-2 FluoroSpot. For 24 patients sampled at the first visit, the IgG, MBC, and MTC analyses were also performed 3 months later at the second visit. RESULTS: Seventy-two percent of convalescents were both MBC- and MTC-positive, 18% were MBC-positive and MTC-negative, and 10% were MTC-positive and MBC-negative. The peak MBC response level was detected at 3 months after COVID-19 onset and persisted up to 7 months post infection. Significant MTC levels were detected 1 month after onset in response to S1, S2_N, and SNMO peptide pools. The frequency and magnitude of the MTC response to SNMO was higher than those to S1 and S2_N. Longitudinal analysis demonstrated that even when specific humoral immunity declined, the cellular immunity persisted. CONCLUSIONS: The study findings demonstrate the durability of adaptive cellular immunity at least for 7 months after SARS-CoV-2 infection, suggesting long-lasting protection.


Subject(s)
COVID-19 , Antibodies, Viral , Cross-Sectional Studies , Enzyme-Linked Immunospot Assay , Humans , Longitudinal Studies , Memory B Cells , Memory T Cells , SARS-CoV-2
15.
Arthritis Rheumatol ; 74(2): 284-294, 2022 02.
Article in English | MEDLINE | ID: covidwho-1594369

ABSTRACT

OBJECTIVE: To evaluate seroreactivity and disease flares after COVID-19 vaccination in a multiethnic/multiracial cohort of patients with systemic lupus erythematosus (SLE). METHODS: Ninety SLE patients and 20 healthy controls receiving a complete COVID-19 vaccine regimen were included. IgG seroreactivity to the SARS-CoV-2 spike receptor-binding domain (RBD) and SARS-CoV-2 microneutralization were used to evaluate B cell responses; interferon-γ (IFNγ) production was measured by enzyme-linked immunospot (ELISpot) assay in order to assess T cell responses. Disease activity was measured by the hybrid SLE Disease Activity Index (SLEDAI), and flares were identified according to the Safety of Estrogens in Lupus Erythematosus National Assessment-SLEDAI flare index. RESULTS: Overall, fully vaccinated SLE patients produced significantly lower IgG antibodies against SARS-CoV-2 spike RBD compared to fully vaccinated controls. Twenty-six SLE patients (28.8%) generated an IgG response below that of the lowest control (<100 units/ml). In logistic regression analyses, the use of any immunosuppressant or prednisone and a normal anti-double-stranded DNA antibody level prior to vaccination were associated with decreased vaccine responses. IgG seroreactivity to the SARS-CoV-2 spike RBD strongly correlated with the SARS-CoV-2 microneutralization titers and correlated with antigen-specific IFNγ production determined by ELISpot. In a subset of patients with poor antibody responses, IFNγ production was similarly diminished. Pre- and postvaccination SLEDAI scores were similar in both groups. Postvaccination flares occurred in 11.4% of patients; 1.3% of these were severe. CONCLUSION: In a multiethnic/multiracial study of SLE patients, 29% had a low response to the COVID-19 vaccine which was associated with receiving immunosuppressive therapy. Reassuringly, severe disease flares were rare. While minimal protective levels remain unknown, these data suggest that protocol development is needed to assess the efficacy of booster vaccination.


Subject(s)
Antirheumatic Agents/therapeutic use , COVID-19 Vaccines/therapeutic use , COVID-19/prevention & control , Immunocompromised Host , Immunogenicity, Vaccine , Immunosuppressive Agents/therapeutic use , Lupus Erythematosus, Systemic/drug therapy , 2019-nCoV Vaccine mRNA-1273/therapeutic use , Ad26COVS1/therapeutic use , Adult , Antibodies, Viral/immunology , B-Lymphocytes/immunology , BNT162 Vaccine/therapeutic use , COVID-19 Vaccines/immunology , Case-Control Studies , Cohort Studies , Enzyme-Linked Immunospot Assay , Female , Glucocorticoids/therapeutic use , Humans , Immunoglobulin G/immunology , Interferon-gamma/immunology , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/physiopathology , Male , Middle Aged , Neutralization Tests , Prednisone/therapeutic use , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology , Symptom Flare Up
16.
Eur J Clin Microbiol Infect Dis ; 40(12): 2669-2676, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1460345

ABSTRACT

The humoral and cellular immunity of convalescent COVID-19 patients is involved in pathogenesis and vaccine immunity. In this study, through CoV-psV neutralization assay and IFN-γ ELISpot testing in 30 cases of COVID-19 patients after 9 months post-SARS-CoV-2 infection, it found that the ratio of memory/naive CD4+ T lymphocytes cells and levels of anti-SARS-CoV-2-IgM and RBD-IgM were slightly but significantly higher in COVID-19 severe convalescent patients than that in non-severe patients. The specific cellular and humoral immunity against SARS-CoV-2 were detectable, regardless of the severity of the disease in the acute phase. This information may help understanding the immune status after SARS-CoV-2 infection.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Adult , Aged , Antibodies, Viral/blood , COVID-19/blood , Enzyme-Linked Immunospot Assay , Female , Humans , Immunity, Cellular , Immunity, Humoral , Immunoglobulin M/blood , Male , Middle Aged , SARS-CoV-2/genetics , SARS-CoV-2/physiology
17.
PLoS Pathog ; 17(9): e1009842, 2021 09.
Article in English | MEDLINE | ID: covidwho-1416911

ABSTRACT

The aim of this study was to define the breadth and specificity of dominant SARS-CoV-2-specific T cell epitopes using a comprehensive set of 135 overlapping 15-mer peptides covering the SARS-CoV-2 envelope (E), membrane (M) and nucleoprotein (N) in a cohort of 34 individuals with acute (n = 10) and resolved (n = 24) COVID-19. Following short-term virus-specific in vitro cultivation, the single peptide-specific CD4+ T cell response of each patient was screened using enzyme linked immuno spot assay (ELISpot) and confirmed by single-peptide intracellular cytokine staining (ICS) for interferon-γ (IFN-γ) production. 97% (n = 33) of patients elicited one or more N, M or E-specific CD4+ T cell responses and each patient targeted on average 21.7 (range 0-79) peptide specificities. Overall, we identified 10 N, M or E-specific peptides that showed a response frequency of more than 36% and five of them showed high binding affinity to multiple HLA class II binders in subsequent in vitro HLA binding assays. Three peptides elicited CD4+ T cell responses in more than 55% of all patients, namely Mem_P30 (aa146-160), Mem_P36 (aa176-190), both located within the M protein, and Ncl_P18 (aa86-100) located within the N protein. These peptides were further defined in terms of length and HLA restriction. Based on this epitope and restriction data we developed a novel DRB*11 tetramer (Mem_aa145-164) and examined the ex vivo phenotype of SARS-CoV-2-specific CD4+ T cells in one patient. This detailed characterization of single T cell peptide responses demonstrates that SARS-CoV-2 infection universally primes a broad T cell response directed against multiple specificities located within the N, M and E structural protein.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Acute Disease , Adult , Aged , Cohort Studies , Coronavirus Envelope Proteins/immunology , Coronavirus Nucleocapsid Proteins/immunology , Enzyme-Linked Immunospot Assay , Epitopes, T-Lymphocyte/immunology , Female , Humans , Male , Middle Aged , Phosphoproteins/immunology , Spike Glycoprotein, Coronavirus/immunology , Survivors , T-Cell Antigen Receptor Specificity , Viral Matrix Proteins/immunology
18.
Front Immunol ; 12: 693054, 2021.
Article in English | MEDLINE | ID: covidwho-1334935

ABSTRACT

Advanced age is associated with severe symptoms and death upon SARS-CoV-2 infection. Virus-specific CD8+ T-cell responses have shown to be protective toward critical COVID-19 manifestations, suggesting that suboptimal cellular immunity may contribute to the age-pattern of the disease. The induction of a CD8+ T-cell response against an emerging pathogen like SARS-CoV-2 relies on the activation of naive T cells. To investigate whether the primary CD8+ T-cell response against this virus is defective in advanced age, we used an in vitro approach to prime SARS-CoV-2-specific naive CD8+ T cells from healthy, unexposed donors of different age groups. Compared to younger adults, older individuals display a poor SARS-CoV-2-specific T-cell priming capacity in terms of both magnitude and quality of the response. In addition, older subjects recognize a lower number of epitopes. Our results implicate that immune aging is associated with altered primary SARS-CoV-2-specific CD8+ T-cell responses.


Subject(s)
Aging/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Adult , Aged , Antigens, Viral/immunology , Cells, Cultured , Enzyme-Linked Immunospot Assay , Epitopes, T-Lymphocyte/immunology , Gene Expression Regulation , Healthy Volunteers , Humans , Interferon-gamma/genetics , Interferon-gamma/metabolism , Lymphocyte Activation , Middle Aged , Peptides/immunology , Young Adult
19.
Cells ; 10(8)2021 07 21.
Article in English | MEDLINE | ID: covidwho-1325606

ABSTRACT

Assessment of humoral immunity to SARS-CoV-2 and other infectious agents is typically restricted to detecting antigen-specific antibodies in the serum. Rarely does immune monitoring entail assessment of the memory B-cell compartment itself, although it is these cells that engage in secondary antibody responses capable of mediating immune protection when pre-existing antibodies fail to prevent re-infection. There are few techniques that are capable of detecting rare antigen-specific B cells while also providing information regarding their relative abundance, class/subclass usage and functional affinity. In theory, the ELISPOT/FluoroSpot (collectively ImmunoSpot) assay platform is ideally suited for antigen-specific B-cell assessments since it provides this information at single-cell resolution for individual antibody-secreting cells (ASC). Here, we tested the hypothesis that antigen-coating efficiency could be universally improved across a diverse set of viral antigens if the standard direct (non-specific, low affinity) antigen absorption to the membrane was substituted by high-affinity capture. Specifically, we report an enhancement in assay sensitivity and a reduction in required protein concentrations through the capture of recombinant proteins via their encoded hexahistidine (6XHis) affinity tag. Affinity tag antigen coating enabled detection of SARS-CoV-2 Spike receptor binding domain (RBD)-reactive ASC, and also significantly improved assay performance using additional control antigens. Collectively, establishment of a universal antigen-coating approach streamlines characterization of the memory B-cell compartment after SARS-CoV-2 infection or COVID-19 vaccinations, and facilitates high-throughput immune-monitoring efforts of large donor cohorts in general.


Subject(s)
Antigens, Viral/analysis , B-Lymphocytes/immunology , Enzyme-Linked Immunospot Assay/methods , Immunologic Memory , SARS-CoV-2/immunology , Viral Proteins/immunology , Animals , COVID-19 , Histidine , Humans , Mice , Oligopeptides , SARS-CoV-2/metabolism
20.
J Gerontol A Biol Sci Med Sci ; 77(1): 33-40, 2022 01 07.
Article in English | MEDLINE | ID: covidwho-1305419

ABSTRACT

Understanding how older people respond to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical if we are to confront the coronavirus disease 2019 (COVID-19) pandemic and establish effective vaccination strategies. Immunosenescence reduces the ability to respond to neoantigens and may compromise the life of infected individuals. Here, we analyzed the immunological memory to SARS-CoV-2 in 102 recovered patients aged over 60 years several months after the infection had been resolved. Specific memory T lymphocytes against the virus were measured by interferon-γ (IFN-γ) and granzyme B release by ELISpot; memory B-lymphocyte responses were quantified by detection of anti-S IgG1 producer cells by ELISpot and anti-S and anti-N antibodies were determined by enzyme-linked immunosorbent assay (ELISA). Memory T lymphocytes were found in peripheral blood of most of the studied donors, more than 7 months after the infection in some of them. Fewer patients maintained memory B lymphocytes, but antibodies, mainly anti-S, were highly durable and positively correlated with T responses. More robust humoral responses were found in patients who had more severe symptoms and had been admitted to hospital. We concluded that specific immunity against SARS-CoV-2 is effectively preserved regardless of age, despite the great heterogeneity of their immune responses, and that memory T lymphocytes and anti-S IgG might be more durable than memory B cells and anti-N IgG.


Subject(s)
Antibodies, Viral/immunology , COVID-19 , Immunity, Cellular/physiology , Immunity, Humoral , Immunologic Memory , SARS-CoV-2 , Aged , Aged, 80 and over , Enzyme-Linked Immunospot Assay , Female , Humans , Immunoglobulin G , Male , Memory B Cells , Memory T Cells , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL